skip to main content


Search for: All records

Creators/Authors contains: "Yang, Liju"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Carbon dots (CDots) are small carbon nanoparticles with effective surface passivation by organic functionalization. In the reported work, the surface functionalization of preexisting small carbon nanoparticles with N-ethylcarbazole (NEC) was achieved by the NEC radical addition. Due to the major difference in microwave absorption between the carbon nanoparticles and organic species such as NEC, the nanoparticles could be selectively heated via microwave irradiation to enable the hydrogen abstraction in NEC to generate NEC radicals, followed by in situ additions of the radicals to the nanoparticles. The resulting NEC-CDots were characterized by microscopy and spectroscopy techniques including quantitative proton and 13C NMR methods. The optical spectroscopic properties of the dot sample were found to be largely the same as those of CDots from other organic functionalization schemes. The high structural stability of NEC-CDots benefiting from the radical addition functionalization is highlighted and discussed. 
    more » « less
  2. Carbon dots (CDots) of small carbon nanoparticles with oligomeric polyethylenimine for surface functionalization, coupled with visible light exposure, were found highly effective in the inactivation of bacterial pathogens. In this study, using a representative strain of a major foodborne pathogen – Listeria monocytogenes , as a target, the effects of the CDots treatment at sublethal concentrations on bacterial functions/behaviors related to the biofilm formation ability/potential, including cell attachment and swimming motility, were assessed. On the consequence at molecular level, the expression levels of the genes that are related to cell attachment/adhesion, motility, flagellar synthesis, quorum sensing, and environmental stress response and virulence were found all being up-regulated. 
    more » « less
  3. Carbon dots (CDots) are generally defined as small-carbon nanoparticles with surface organic functionalization and their classical synthesis is literally the functionalization of preexisting carbon nanoparticles. Other than these “classically defined CDots”, however, the majority of the dot samples reported in the literature were prepared by thermal carbonization of organic precursors in mostly “one-pot” processing. In this work, thermal processing of the selected precursors intended for carbonization was performed with conditions of 200 °C for 3 h, 330 °C for 6 h, and heating by microwave irradiation, yielding samples denoted as CS200, CS330, and CSMT, respectively. These samples are structurally different from the classical CDots and should be considered as “nano-carbon/organic hybrids”. Their optical spectroscopic properties were found comparable to those of the classical CDots, but very different in the related photoinduced antibacterial activities. Mechanistic origins of the divergence were explored, with the results suggesting major factors associated with the structural and morphological characteristics of the hybrids. 
    more » « less
  4. The carbon/TiO2 hybrid dots (C/TiO2-Dots) are structurally TiO2 nanoparticles (in the order of 25 nm in diameter from commercially available colloidal TiO2 samples) surface-attached by nanoscale carbon domains with organic moieties, thus equivalent to hybrids of individual TiO2 nanoparticles each decorated with many carbon dots. These hybrid dots with exposure to visible light exhibit potent antibacterial properties, similar to those found in neat carbon dots with the same light activation. The results from the use of established scavengers for reactive oxygen species (ROS) to “quench” the antibacterial activities, an indication for shared mechanistic origins, are also similar. The findings in experiments on probing biological consequences of the antibacterial action suggest that the visible light-activated C/TiO2-Dots cause significant damage to the bacterial cell membrane, resulting in higher permeability, with the associated oxidative stress leading to lipid peroxidation, inhibiting bacterial growth. The induced bacterial cell damage could be observed more directly in the transmission electron microscopy (TEM) imaging. Opportunities for the further development of the hybrid dots platform for a variety of antibacterial applications are discussed. 
    more » « less
  5. Carbon “quantum” dots or carbon dots (CDots) exploit and enhance the intrinsic photoexcited state properties and processes of small carbon nanoparticles via effective nanoparticle surface passivation by chemical functionalization with organic species. The optical properties and photoinduced redox characteristics of CDots are competitive to those of established conventional semiconductor quantum dots and also fullerenes and other carbon nanomaterials. Highlighted here are major advances in the exploration of CDots for their serving as high-performance yet nontoxic fluorescence probes for one- and multi-photon bioimaging in vitro and in vivo, and for their uniquely potent antimicrobial function to inactivate effectively and efficiently some of the toughest bacterial pathogens and viruses under visible/natural or ambient light conditions. Opportunities and challenges in the further development of the CDots platform and related technologies are discussed. 
    more » « less
  6. Electrospun polyacrylonitrile (PAN) nanofibers integrated with different loadings of the photosensitizer rose bengal (RB) were synthesized for photodynamic inactivation of bacteria. Our results suggest that the ionic strength in the medium does not significantly affect the RB release from the RB-integrated electrospun PAN nanofibers (RBiEPNs), which could release RB effectively in phosphate-buffered saline (PBS), physiological saline (0.85% NaCl), and deionized H 2 O. However, the pH of the medium significantly influenced the release of RB. A larger amount of RB was released in PBS at a higher pH (RB release: pH 9.0 > pH 7.4 > pH 5.0). The RBiEPNs depicted high antimicrobial efficacy against both Gram-negative Escherichia coli ( E. coli ) and Gram-positive Bacillus subtilis ( B. subtilis ) bacteria under white light irradiation. The antimicrobial efficacy was potent and immediate against the bacterial cells, especially B. subtilis . The RBiEPNs containing 0.33 wt% RB demonstrated complete bacterial kills for B. subtilis and E. coli cells with log reductions of 5.76 and 5.94 in 30 s and 40 min, respectively. The generation of intracellular reactive oxygen species (iROS) was examined after white light treatment of the bacterial cells in the presence of the RBiEPNs. A significant correlation was found between the amount of iROS and the antimicrobial efficacy of the RBiEPNs. The high antimicrobial efficacy could be attributed to several factors, such as the encapsulation efficiency, loading capacity, and RB release behavior of the RBiEPNs, the presence of white light, and the generation of iROS. Taken together, the facile incorporation of a photosensitizer into polymeric nanofibers via blend electrospinning offers a feasible strategy for water disinfection. 
    more » « less
  7. Herein, we report an effective strategy to maximize the antimicrobial activity of CuWO 4 /CuS hybrid composites, prepared by simply mixing CuWO 4 and CuS nanopowders with varying weight ratios in phosphate buffered saline solution by ultrasound. The tested bacteria included Gram negative (G − ) pathogenic bacteria Salmonella typhi , Gram positive (G + ) pathogenic bacteria Staphylococcus aureus , and G + bacteria Bacillus subtilis . The as-prepared composites exhibited much enhanced antibacterial efficiency compared with individual CuWO 4 and CuS nanopowders under white light irradiation. The checkerboard array analysis revealed that the combination of 8 μg mL −1 CuWO 4 and 2 μg mL −1 CuS was the most efficient and generated the optimal synergistic effect, showing a complete killing effect on all the tested bacteria from 3 strains with ∼5.8 log cell reduction. The significantly enhanced catalytic efficiency can be ascribed to the formation of a type-II heterojunction between CuWO 4 and CuS, which can effectively improve the charge separation efficiency and increase the light absorption. Moreover, the hybrid composites prepared by ultrasound-assisted physical mixing can effectively increase the interface area, which greatly facilitates the charge mobility and transfer in the interfaces between CuWO 4 and CuS. This study offers new insights into the integration of different semiconductors to optimize their synergistic effect on antimicrobial activities for water disinfection. 
    more » « less
  8. This study aimed to address the significant problems of bacterial biofilms found in medical fields and many industries. It explores the potential of classic photoactive carbon dots (CDots), with 2,2′-(ethylenedioxy)bis (ethylamine) (EDA) for dot surface functionalization (thus, EDA-CDots) for their inhibitory effect on B. subtilis biofilm formation and the inactivation of B. subtilis cells within established biofilm. The EDA-CDots were synthesized by chemical functionalization of selected small carbon nanoparticles with EDA molecules in amidation reactions. The inhibitory efficacy of CDots with visible light against biofilm formation was dependent significantly on the time point when CDots were added; the earlier the CDots were added, the better the inhibitory effect on the biofilm formation. The evaluation of antibacterial action of light-activated EDA-CDots against planktonic B. subtilis cells versus the cells in biofilm indicate that CDots are highly effective for inactivating planktonic cells but barely inactivate cells in established biofilms. However, when coupling with chelating agents (e.g., EDTA) to target the biofilm architecture by breaking or weakening the EPS protection, much enhanced photoinactivation of biofilm-associated cells by CDots was achieved. The study demonstrates the potential of CDots to prevent the initiation of biofilm formation and to inhibit biofilm growth at an early stage. Strategic combination treatment could enhance the effectiveness of photoinactivation by CDots to biofilm-associated cells. 
    more » « less